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Introduction. In this paper, we are concerned with the Duffing oscillator, which has been applied to model 
many mechanical systems and has attracted much attention as a typical nonlinear system. When the system 
is under only a harmonic excitation or random one, two popular tools used to study such a nonlinear system 
are the averaging method and equivalent linearization method, respectively. The former was originally given 
by Krylov and Bogolyubov [1] and then it was developed by Bogolyubov and Mitropolskiy [2-4] and was ex-
tended to systems under a random excitation with the works of Stratonovich [5], Khasminskii [6], and oth-
ers, which were reviewed in survey paper by Mitropolskiy [3], Robert and Spanos [7] and Manohar [8]. The 
later, the stochastic equivalent linearization method, which has attracted many researchers due to its origi-
nality and capability for various applications in engineering, was first studies by Kazakov [9], who extended 

 of deterministic problems to random problems. This 
method was also reviewed in some books by Roberts and Spanos [10], and Socha [11]. Recently, some ap-
proaches to the stochastic linearization have been proposed in Refs. [12-14]. In [13-14], for example, Anh 

 have proposed a dual criterion of stochastic linearization method for single and multi-degree-of-
freedom nonlinear systems under white noise random excitations. The authors showed that the accuracy of 
the mean-square response is significantly improved when the nonlinearity increases.  

In a Duffing oscillator under periodic excitation,  the phenomenon of subharmonic response has been 
known for years and has been described in many textbooks (see e.g. [15-18]) and works (see e.g. [19-21]). 
When the system is subjected to a combination of harmonic and random excitations, however, to the au-

(see e.g. [22-25]), there is no work on its subharmonic response. Thus, in this research, we present a tech-
nique to treat a one third order subharmonic response of a Duffing oscillator subjected to periodic and ran-
dom excitations. The technique is a combination of the stochastic averaging method, the equivalent lineari-
zation method, and the technique of auxiliary function which yields the exact joint stationary probability den-
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sity function (PDF) for the equivalent linear system [4,26,27]. The approximate analytical solution of the 
Duffing system obtained by the proposed technique is validated by numerical simulation results, obtained by 
Monte-Carlo method. 
1. Formulation problem. Let us consider Duffing oscillator under harmonic and random excitations of the 
form 

 3 2 cos ,z hz z z P t t  (1) 

where z t , z t , z t  are the displacement, velocity and acceleration of the system, respectively;  is a 

small positive parameter; h  is the damping coefficient;  is the nonlinear stiffness coefficient;  is the 
natural frequency of the corresponding linear system when 0 ; P ,  and  are parameters; and 
function t  is a Gaussian white noise process of unit intensity with the correlation function 

R E t t , where  is the Dirac delta function, and notation .E  denotes the 

mathematical expectation operator. It is supposed that the natural frequency  is close to / 3 , i.e. pa-
rameters  and  have the relation 

 
2

2

9
, (2) 

where  is a detuning parameter. We introduce a new variable x  as follows 

 2 2cos , . (3) 

Using (3) Eq. (1) can be rewritten in the form  

 32 sin cos . (4) 

Substituting (2) into Eq. (4) we obtain  

 
2

, , ,
3

 (5) 

where 

 3, , sin cos .  (6) 

We seek the solution of Eq. (5) in the form of 

 cos sin , sin cos ,
3 3 3 3 3 3

 (7) 

where  and  are slowly varying random processes satisfying an additional condition 

 cos sin 0
3 3

. (8) 

Substituting (7) into Eq. (5) and then solving the resulting equation and Eq. (8) with respect to the deriva-
tives  and  yield  

 

3 sin ,
3

3 cos ,
3

 (9) 

where, noting (6) and (7),  
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 3

cos sin sin cos sin
3 3 3 3 3 3

cos sin cos .
3 3

. (10) 

The pair of stochastic differential equations (9) can be simplified by using the stochastic averaging method 
[3-7]  

 
1 1

2 2

3, ,
2

3, .
2

 (11) 

Here 1  and 2  are independent white noises with unit intensity, and the drift coefficients 1 ,H b d  

and 2 ,  are determined as follows 

 
2 2

1 2
0 0

1 3 1 3, sin , , cos
2 3 3 2 3 3

. (12) 

Substituting(6), (7) into (12) yields the drift coefficients of the system (11)  

 

2
2 3

1

2
3 2 2 2

2

6 9 9, 2 ,
2 4 8
6 9 9, .

4 2 8

 (13) 

The Fokker-Planck (FP) equation written for the stationary probability density function (PDF) ,W b d  asso-
ciated with the system (11) has the form 

 
2 2 2

1 2 2 2 2
9, ,
4

. (14) 

Solution of (14) is still a difficult problem so far because functions 1 ,  and 2 , are nonlinear 

functions in , . To overcome this, the equivalent linearization method is employed. Following this method, 
the nonlinear functions 1 2,  are replaced by linear ones. Noting (13), we denote  

 
2 3

1

3 2 2 2
2

9, 2 ,
8
9, .
8

 (15) 

According to the stochastic equivalent linearization method the nonlinear functions (15) are replaced by  

 1 11 12 13

2 21 22 23

, ,
, ,

 (16) 

where linearization coefficients , 1,2; 1,2,3  are to be determined by an optimization criterion. 

Thus, the functions , 1,2  in (13) are replaced by linear functions  
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2

1 11 12 13

2

2 21 22 23

6 9, ,
2 4
6 9, .

4 2

 (17) 

According to the technique of auxiliary function with the constant auxiliary function taking the form (see 
[4,26,27] for details) 

 

2

2 21 12

0 2
11 22

6 9
9 2
4

,  (18) 

the corresponding FP equation to Eq. (14), where drift coefficients are linear functions (17), has the follow-
ing exact solution  

 2 2
1 2 3 4 5( , ) exp , (19) 

where C  is a normalization constant and coefficients , 1,5  are determined as follows 

11

2 2

1 11 22 21 21 12
6 9 6 9

2 4 2
, 

2 2

2 11 22 22 21 12 12
6 9 6 9

2 2 4 , 

2 2

3 21 22 12 11
6 9 6 92

4 2 4 2 ,  (20) 

2

4 13 11 22 23 21 12
6 92

2 , 

2

5 21 21 13 11 22 23
6 92

2 ,  

where  

 
2

11 22
22 22

21 12 11 22

2

6 99
2

. (21) 

It is noted that the joint PDF ,  determined by (19) has finite integral if coefficients 1  and 2  are 
positive. Therefore, the approximate stationary PDF of Eq. (14) is determined by (19) whose coefficients are 
given in (20). It is seen from (19) that random variables b  and d  are jointly Gaussian. Thus, from(19), one 
obtains  

2 4 3 5
2

1 2 3

2 ,
4

1 5 3 4
2

1 2 3

2 ,
4

2 2
2

1 2 3

2 ,
4

 (22) 

 2 1
2

1 2 3

2 ,
4

3
2

1 2 34
,  

where 2  and 2  are variance of  and , respectively, and  is covariance of  and . It is seen 
from (22) that necessary statistics of processes  and can be computed algebraically based on coeffi-
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cients of joint PDF , . Thus, the approximate solution (19) of Eq. (1) is completely determined when 

the linearization coefficients , 1,2; 1,2,3  are found.  

There are some criteria for determining the coefficients  [20]. In this work, we use the mean square 

error criterion which requires that the mean square of the following errors be minimum [10,11]. From (13), 
(15)-(17) we have the errors when using linearization method to be 

  1 2 3, , 1,2 . (23) 

So, the mean square error criterion leads to  

 
22

1 2 3, min, 1,2; 1,2,3.  (24) 

From  

 2 0, 1,2; 1,2,3 , (25) 

it follows that  

 

2
1 11 12 13

2
1 11 12 13

1 11 12 13

2
2 21 22 23

2
2 21 22 23

2 21 22 23

, 0,

, 0,

, 0,

, 0,

, 0,

, 0,

 (26) 

where 1 2, , ,  are given by (15). Using the fact that and  are jointly Gaussian, all higher 
moments of and   in (26) can be expressed in terms of the first and second moments of and   by the 
following properties of a Gaussian random vector 1 2, ,  [28]  

 
1 2 1 2 1 2 1 2

1 2

1 2 1

1 1
1 2 1 2 1 1 2 2 1 2

,

, 1,2.
 (27) 

Solving system (26) in , 1,2; 1,2,3  with noting (27) gives  

 

11

2 2 2 2
12

2 3
13

2 2 2 2
21

22

2 3 2 2 2 2
23

9 ,
4
9 3 3 2 ,
8
9 ,
4
9 3 3 2 ,
8
9 ,
4
9 2 2 .
8

 (28) 
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Thus, , 1,2; 1,2,3 are determined from the closed system of eleven equations for eleven unknowns 

,  1,2; 1,2,3 ; 2 2, , , , , obtained by combining equations in (20), (22), and (28). 

After being found by solving this closed system, the values of coefficients , 1,2 ; 1,2,3  are to be 

substituted into (19) to obtain the approximate stationary PDF in b  and d  of Duffing equation (1).  
From (7), the mean square response of Eq. (5) can be determined as follows  

 2 2 2 2 2 2cos sin sin
3 3 3

. (29) 

Taking averaging with respect to time Eq. (29) gives 

 
2

2 2 2 2

0

1 1
2 3 2

. (30) 

From properties of a variance of a random variable [28], Eq. (30) can be rewritten as 

  2 2 2 2 21 .
2

 (31) 

Substituting (22) into (31) and reducing the obtained result yield the time-averaging of mean square re-
sponse to be  

 
2 2

2 4 3 5 1 5 3 42 1 2
2 22

1 2 31 2 3

2 2
,

42 4
 (32) 

where , 1,5  are given by (20). From (3), one obtains 

 
2 222 2

0

1 cos .
2 3 2

 (33) 

Substituting (32) into (33) yields  

 
2 2 2

2 4 3 5 1 5 3 42 1 2
2 22 1 2 31 2 3

2 2
242 4

. (34) 

This formula shows that the time-averaged mean square one third order subharmonic response of the sys-
tem can be computed from the coefficients of the stationary PDF (19). 
2. Numerical results. In the numerical simulation, the parameters in system (1) are chosen as follows 

1 , 3.01 , 0.01, 1 , 2 , 1 . The various values of the subharmonic response of Duffing 

equation (1) are compared to the numerical simulation results versus the parameter 2 . The numerical sim-
ulation of the time- averaged mean square response 2  is obtained by 10,000-realization Monte Carlo 

simulation with time t  in the interval (900s, 1000s). The time-averaged mean square response 2  of 

the Duffing oscillator, obtained by the system (22), (28) and (34), are compared to a numerical result. The 
response versus the parameter 2 is evaluated in Table 1 where the error is defined as 

 
2 2

2
Err 100% . (35) 

It is seen from Table 1 that the proposed technique gives a good prediction. Moreover, Fig. 1 portrays the 
variation of the mean square subharmonic responses 2  obtained by the present technique with the 

noise parameter 2  compared to ones obtained by Monte-Carlo simulation. It is seen that the theoretical 
prediction and the simulations agree very well.  
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The error between the simulation result and approximate values of the time-averaging of mean 
square response 2  versus the parameter 2  1, 3.01, 1, 2, 0.01, 1  

 

            
2  

     
2  

  
2  

       
Err %  

0.1 0.0323 0.0331 2.48 
0.5 0.1328 0.1350 1.69 
1 0.2599 0.2626 1.03 
2 0.4978 0.5136 3.18 
3 0.7272 0.7607 4.61 
4 0.9850 1.0074 2.28 
5 1.2271 1.2545 2.23 

 
 

 
Fig. 1. The time-averaged mean square subharmonic response versus the parameter 2 ( 1, 3.01,  1, 2, 0.01, 1)P h  

 

 
                 Fig. 2. Effects of  2  and P  on the mean square subharmonic response, 1, 3.01, 0.01, 1, 1h  
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Fig. 3. Effects of  2  and h  on the mean square subharmonic response, 1, 3.01, 0.01, 1, 1P  

 

Next, we investigate the effects of the noise intensity 2 , external force amplitude P , and the 
damping term h  on the one third order subharmonic response based on equations (22), (28) and (34). With 
initial values 
 11 12 13 21 22 23, , , , , 1, 1,1,0, 1,1 , 
and the input parameters 1 , 3.01 , 0.01 , 1 , theoretical results are shown in Fig. 2 and Fig. 3. 
It can be observed that from Fig. 2 that the mean response amplitude increases when harmonic excitation 
increases. In Fig. 3, we can see that for given parameters , , , ,  the time-averaged mean square re-
sponse decreases as the damping coefficient increases. 
3. Summary and conclusions. The averaging method and the equivalent linearization method are famous 
tools in studying nonlinear systems subjected to harmonic and random excitation, respectively. A combina-
tion of those methods will give a power tool to study complex systems. In this work, the subharmonic re-
sponse of one third order of Duffing oscillator under a combination of harmonic and random excitations is 
investigated. The technique used in our research is a combination of the two famous methods mentioned 
above and the technique of auxiliary function to overcome the difficulty in solving the corresponding FP 
equation. The key steps of the technique are summarized as follows. First, the stochastic averaging of the 
equation (1) is carried out in Cartesian coordinates by the transformations (3) and (7). The drift coefficients 
of the averaged equations in the system (11) are polynomial forms in random variables which give an ad-
vantageous context to apply the equivalent linearization method. The linearization coefficients are deter-
mined by a closed system including the equations in (22), (28) and (34). The FP equation associated with 
the equivalent linearized system can be solved exactly by the technique of auxiliary function. The theoretical 
results are agreed well with numerical simulations.  

It appears that the new approach gained through this study has a large potential and it will become 
helpful for other types of nonlinear systems.  

References 
1. Krylov, N. M. Bogoliubov, N. N. Introduction to nonlinear mechanics. (trans: Solomon Lefschetz of 

excerpts from two Russian monographs). Princeton University Press, Michigan, 1947.  472 p. 
2. Bogoliubov, N. N., Mitropolsky, Y. A. Asymptotic methods in the theory of nonlinear oscillations. 

Moscow: Nauka, 1963 (in Russian).  572 p. 
3. Mitropolsky, Y. A. Averaging method in non-linear mechanics. International Journal of Nonlinear 

Mechanics, Pergamon Press Ltd., 1967, vol. 2, pp. 69-96.  



 

47 
 

4. Mitropolsky, Y. A., Dao N. V., Anh, N. D. Nonlinear oscillations in systems of arbitrary order. Kiev: 
Naukova-Dumka, 1992 (in Russian).  344 p. 

5. Stratonovich, R. L. Topics in the Theory of Random Noise. Vol. II, New York: Gordon and Breach, 
1967.  472 p. 

6. Khasminskiy, R. Z. A limit theorem for the solutions of differential equations with random right-
hand sides. Theory of Probability and Its Applications, 1966, vol. 11, pp. 390-405. 

7. Roberts, J. B., Spanos, P. D. Stochastic averaging: An approximate method of solving random vi-
bration problems. International Journal of Nonlinear Mechanics, 1986, no. 21(2), pp. 111-134.  

8. Manohar, C. . 345-
371. 

9. Kazakov, I. E. An approximate method for the statistical investigation for nonlinear systems. Proc. 
of Zhukovsky Air Force Engineering Academy, 1954, vol. 394, pp. 1 52 (in Russian). 

10. Roberts, J. B., Spanos, P. D. Random Vibration and Statistical Linearization. Dover Publications 
Inc., Mineola, New York, 1999.  176 p. 

11. Socha, L. Linearization Methods for Stochastic Dynamic System, Lecture Notes in Physics. 
Springer, Berlin, 2008.  391 p. 

12. Elishakoff, I., Andrimasy, L., Dolley, M. Application and extension of the stochastic linearization 
by Anh and Di Paola. Acta Mechanica, 2009, vol. 204, iss. 1-2, pp. 89-98.  

13. Anh, N. D., Hieu, N. N., Linh, N. N. A dual criterion of equivalent linearization method for nonlin-
ear systems subjected to random excitation. Acta Mechanica, 2012, vol. 223, iss. 3, pp. 645-654.  

14. Anh, N. D., Zakovorotny, V. L, Hieu, N. N., Diep, D. V. A dual criterion of stochastic linearization 
method for multi-degree-of-freedom systems subjected to random excitation. Acta Mechanica, 2012, vol. 
223, iss. 12, pp. 2667-2684. 

15. Nayfeh, A. H., Mook, D. T. Nonlinear oscillations. Wiley-Interscience, 1995.  275 p. 
16. Mitropolsky, I. A., Dao, N. V. Applied asymptotic methods in nonlinear oscillations. Springer-

Science +Business Media, B.V. DOI 10.1007/978-94-015-8847-8. 1997.  341 p. 
17. Kelly, S. G. Mechanical vibrations: Theory and applications. Cengage Learning, 2012.  475 p. 
18. Davies, H. G., Rajan, S. Random superharmonic and subharmonic response: Multiple time scal-

ing of a duffing oscillator. Journal of Sound and Vibration, 1988, vol. 126, iss. 2, pp. 195-208. 
19. Dimentberg, M. F., Iourtchenko, D. V., Ewijk, O. V. Subharmonic response of a quasi-

isochronous vibroimpact system to a randomly disordered periodic excitation. Nonlinear Dynamics, 1998, vol. 
17, pp. 173-186. 

20. Haiwu, R., Xiangdong, W., Wei, X., Tong, F. Subharmonic response of a single-degree-of-
freedom nonlinear vibroimpact system to a randomly disordered periodic excitation. Journal of Sound and 
Vibration, 2009, vol. 327, pp. 173-182. 

21. Li, F. M., Yao, G. 1/3 Subharmonic resonance of a nonlinear composite laminated cylindrical shell 
in subsonic air flow. Composite Structures, 2013, vol. 100, pp. 249-256. 

22. Huang, Z. L., Zhu, W. Q., Suzuki, Y. Stochastic averaging of strongly non-linear oscillators under 
combined harmonic and white noise excitations. Journal of Sound and Vibration, 2000, vol. 238, pp. 233-
256.  

23. Haiwu, R., Wei, X., Guang, M., Tong, F. Response of a Duffing oscillator to combined determinis-
tic harmonic and random excitation. Journal of Sound and Vibration, 2001, vol. 242, iss. 2, pp. 362-368.  

24. Anh, N. D., Hieu, N. N. The Duffing oscillator under combined periodic and random excitations. 
Probabilistic Engineering Mechanics, 2012, vol. 30, pp. 27-36.  

25. Narayanan, S., Kumar, P. Numerical solutions of Fokker-Planck equation of nonlinear systems 
subjected to random and harmonic excitations. Probabilistic Engineering Mechanics, 2012, vol. 27, pp. 35-
46. 



 

48 
 

26. Anh, N. D. Random oscillations in non-autonomous mechanical systems with random parametric 
excitation. Ukranian Mathematical Journal, 1985, vol. 37, pp. 412-416.  

27. Anh, N. D. Two methods of integration of the Kolmogorov-Fokker-Planck equations (English). 
Ukr. Math. J., 1986, vol. 38, pp. 331-334; trans. from Ukr. Mat. Zh. 1986, vol. 38, iss. 3, pp. 381-385.  

28. Lutes, L., Sarkani, S. Stochastic Analysis of Structural Dynamics. Upper Saddle River, New Jer-
sey: Prentice Hall, 1997.  276 p. 
 

    14.10.2014. 
 

  
1. Krylov, N. M. Bogoliubov, N .N. Introduction to nonlinear mechanics. (trans: Solomon Lefschetz of 

excerpts from two Russian monographs). Princeton University Press, Michigan, 1947.  472 p. 
2.   A. Asimptoticheskie metodyi v teorii nelineynyih 

kolebaniy. [Asymptotic methods in the theory of nonlinear oscillations.] : , 1963 (in Russian).  
572 . 

3. Mitropolsky, Y. A. Averaging method in non-linear mechanics. International Journal of Nonlinear 
Mechanics, Pergamon Press Ltd., 1967, no. 2, pp. 69-96.  

4. , . A. Nelineynyie kolebaniya v sistemah 
proizvolnogo poryadka. [Nonlinear oscillations in systems of arbitrary order].  :  , 
1992.  344 . (in Russian). 

5. Stratonovich, R. L. Topics in the Theory of Random Noise. Vol. II, New York: Gordon and Breach, 
1967.  472 p. 

6. Khasminskiy, R. Z. A limit theorem for the solutions of differential equations with random right-
hand sides. Theory of Probability and Its Applications, 1966, vol. 11, pp. 390-405. 

7. Roberts, J. B., Spanos, P. D. Stochastic averaging: An approximate method of solving random vi-
bration problems. International Journal of Nonlinear Mechanics, 1986, vol. 21, iss. 2, pp. 111-134.  

8. Manohar, C. -
371. 

9. , . . Priblizhennyiy metod statisticheskogo issledovaniya nelineynyih sistem. [An ap-
proximate method for the statistical investigation for nonlinear systems.] 

52 (in Russian). 
10. Roberts, J. B., Spanos, P. D. Random Vibration and Statistical Linearization. Dover Publications 

Inc., Mineola, New York, 1999.  176 p. 
11. Socha, L. Linearization Methods for Stochastic Dynamic System, Lecture Notes in Physics. 

Springer, Berlin, 2008.  391 p. 
12. Elishakoff, I., Andrimasy, L., Dolley, M. Application and extension of the stochastic linearization 

by Anh and Di Paola. Acta Mechanica, 2009, vol. 204, iss. 1-2, pp. 89-98.  
13. Anh, N. D., Hieu, N. N., Linh, N. N. A dual criterion of equivalent linearization method for nonlin-

ear systems subjected to random excitation. Acta Mechanica, 2012, vol. 223, iss. 3, pp. 645-654.  
14. Anh, N. D., Zakovorotny, V. L, Hieu, N. N., Diep, D. V. A dual criterion of stochastic linearization 

method for multi-degree-of-freedom systems subjected to random excitation. Acta Mechanica, 2012, vol. 
223, iss. 12, pp. 2667-2684. 

15. Nayfeh, A. H., Mook, D. T. Nonlinear oscillations. Wiley-Interscience, 1995.  275 p. 
16. Mitropolsky, I. A., Dao, N. V. Applied asymptotic methods in nonlinear oscillations. Springer-

Science +Business Media, B.V. DOI 10.1007/978-94-015-8847-8. 1997.  341 p. 
17. Kelly, S. G. Mechanical vibrations: Theory and applications. Cengage Learning, 2012.  475 p. 



 

49 
 

18. Davies, H. G., Rajan, S. Random superharmonic and subharmonic response: Multiple time scal-
ing of a duffing oscillator. Journal of Sound and Vibration, 1988, vol. 126, iss. 2, pp. 195-208. 

19. Dimentberg, M. F., Iourtchenko, D. V., Ewijk, O. V. Subharmonic response of a quasi-
isochronous vibroimpact system to a randomly disordered periodic excitation. Nonlinear Dynamics, 1998, vol. 
17, pp. 173-186. 

20. Haiwu, R., Xiangdong, W., Wei, X., Tong, F. Subharmonic response of a single-degree-of-
freedom nonlinear vibroimpact system to a randomly disordered periodic excitation. Journal of Sound and 
Vibration, 2009, vol. 327, pp. 173-182. 

21. Li, F. M., Yao, G. 1/3 Subharmonic resonance of a nonlinear composite laminated cylindrical shell 
in subsonic air flow. Composite Structures, 2013, vol. 100, pp. 249-256. 

22. Huang, Z. L., Zhu, W. Q., Suzuki, Y. Stochastic averaging of strongly non-linear oscillators under 
combined harmonic and white noise excitations. Journal of Sound and Vibration, 2000, vol. 238, pp. 233-
256.  

23. Haiwu, R., Wei, X., Guang, M., Tong, F. Response of a Duffing oscillator to combined determinis-
tic harmonic and random excitation. Journal of Sound and Vibration, 2001, vol. 242, iss. 2, pp. 362-368.  

24. Anh, N. D., Hieu, N. N. The Duffing oscillator under combined periodic and random excitations. 
Probabilistic Engineering Mechanics, 2012, vol. 30, pp. 27-36.  

25. Narayanan, S., Kumar, P. Numerical solutions of Fokker-Planck equation of nonlinear systems 
subjected to random and harmonic excitations. Probabilistic Engineering Mechanics, 2012, vol. 27, pp. 35-
46.  

26. Anh, N. D. Random oscillations in non-autonomous mechanical systems with random parametric 
excitation. Ukranian Mathematical Journal, 1985, vol. 37, pp. 412-416.  

27. Anh, N. D. Two methods of integration of the Kolmogorov-Fokker-Planck equations (English). 
Ukr. Math. J., 1986, vol. 38, pp. 331-334; trans. from Ukr. Mat. Zh. 1986, vol. 38, iss. 3, pp. 381-385.  

28. Lutes, L., Sarkani, S. Stochastic Analysis of Structural Dynamics. Upper Saddle River, New 
Jersey: Prentice Hall, 1997.  276 p. 
 

* 

 

 ,  ,    ,   
 

                                                           
* NAFOSTED

VNU-HCM -08-00206. 
 


