Preview

Вестник Донского государственного технического университета

Расширенный поиск

Определение изменения формы поверхности непрерывно-неоднородного термоупругого полупространства при локальном нагреве

Полный текст:

Аннотация

Рассматривается осесимметричная квазистатическая задача термоупругости для функционально-градиентного полупространства, модуль упругости, коэффициент Пуассона, коэффициенты теплопроводности и линейного расширения которого непрерывно изменяются в приповерхностном слое. Предполагается, что область внутри круга нагревается источником тепла с постоянной во времени температурой. Вне круга поверхность идеально теплоизолирована. Для решения задачи используются аналитические методы, в частности, аппарат интегральных преобразований Ханкеля. Решение задачи на первом этапе сводится к решению краевой двухточечной задачи для системы обыкновенных дифференциальных уравнений с переменными коэффициентами шестого порядка. Для организации устойчивого процесса численного построения решения системы обыкновенных дифференциальных уравнений используется метод модулирующих функций. В результате решение смешанной граничной задачи сводится к построению решения парного интегрального уравнения. Свойства трансформанты ядра интегрального уравнения задачи позволяют применить хорошо обоснованный и развиваемый в настоящее время двусторонний асимптотический метод. С помощью данного метода найдены в аналитическом виде приближённые выражения величины теплового потока и смещения поверхности полупространства. Приведены численные результаты, отражающие искривление поверхности неоднородного полупространства для различных случаев изменения механических и температурных свойств в приповерхностном слое под действием равномерной температуры в пределах единичного круга. Рассматриваются случаи, когда значения термоупругих свойств покрытия совпадают со значениями термоупругих свойств подложки, либо когда значение характеристики отличается в 2 раза (в большую или в меньшую сторону) на поверхности и линейно убывает (или растёт) по глубине до значения характеристики в подложке. Показано, что максимальное влияние на величину максимального выпора поверхности оказывает разнонаправленное изменение коэффициентов теплопроводности и линейного расширения в покрытии.

Об авторах

Леонид Иванович Кренёв
Донской государственный технический университет, Россия.
Россия


Сергей Михайлович Айзикович
Донской государственный технический университет, Россия.
Россия


Борис Игоревич Митрин
Донской государственный технический университет, Россия.
Россия


Список литературы

1. Новацкий, В. Теория упругости / В. Новацкий. — Mосква : Мир, 1975. — 863 с.

2. Коваленко, А. Д. Введение в термоупругость / А. Д. Коваленко. — Киев : Наукова думка, 1965. — 204 с.

3. Barber, J. R. Thermoelasticity and contact / J. R. Barber. // Journal of Thermal Stresses. — 1999. — Т. 22, № 4. — С. 513–525.

4. Карташов, Э. М. Аналитические методы в теории теплопроводности твёрдых тел / Э. М. Карташов. — Москва : Высшая школа, 2001. — 550 с.

5. Величко, И. Г. Аналитическое решение осесимметрической задачи термоупругости для многослойного основания [Электрон. ресурс] / И. Г. Величко, И. Г. Ткаченко // Вестник Восточноукр. национ. ун-та им. В. Даля. — 2009. — № 4Е. — Режим доступа : http://www.nbuv.gov.ua/e-journals/Vsunud/2009-4E/09vigdmo.htm.

6. Noda, N. On a general treatise of three-dimensional thermoelastic problems in transversely isotropic bodies / N. Noda, Y. Takeuti, Y. Sugano. // ZAMM Z. angew. Math. Mech. — 1985. — Т. 65, № 10. — С. 509–512.

7. Jin, Z. H. Transient thermal stress intensity factors for a crack in semi-infinite plate of a func-tionally gradient material / Z. H. Jin, N. Noda. // International Journal of Solids and Structures. — 1994. — Т. 31, вып. 2. — С. 203–218.

8. Liu, J. Thermoelastic contact analysis of functionally graded materials with properties varying exponentially / J. Liu, L. L. Ke, Y. S. Wang // Advanced Materials Research. — 2011. — Т. 189–193. — С. 988–992.

9. Краснюк, П. П. Плоская контактная задача взаимодействия жёсткого теплопроводного цилиндрического штампа и упругого слоя при нестационарном фрикционном тепловыделении / П. П. Краснюк. // Трение и износ. — 2009. — Т. 30, № 2. — С. 152–162.

10. Айзикович, С. М. Асимптотические решения контактных задач теории упругости для неоднородных по глубине сред / С. М. Айзикович // Прикладная математика и механика. — 1982. — Т. 46, № 1. — С. 148–158.

11. Айзикович, С. М. О свойствах функций податливости, соответствующих слоистому и непрерывно-неоднородному полупространству / С. М. Айзикович, В. М. Александров // Доклады АН СССР. — 1982. — Т. 266, № 1. — С. 40–43.

12. Айзикович, С. М. Осесимметрическая задача о вдавливании круглого штампа в упругое, неоднородное по глубине полупространство / С. М. Айзикович, В. М. Александров // Известия АН СССР, МТТ. — 1984. — Т. 39, № 2. — С. 73–82.

13. Айзикович, С. М. Асимптотическое решение одного класса парных уравнений / С. М. Айзикович // Прикладная математика и механика. — 1990. — Т. 54, № 5. — С. 872–877.


Для цитирования:


Кренёв Л.И., Айзикович С.М., Митрин Б.И. Определение изменения формы поверхности непрерывно-неоднородного термоупругого полупространства при локальном нагреве. Вестник Донского государственного технического университета. 2013;13(3-4):5-15.

For citation:


Krenev L.I., Aizikovich S.M., Mitrin B.I. DETERMINATION OF SURFACE DEFORMATION OF CONTINUOUSLY INHOMOGENEOUS THERMOELASTIC HALF-SPACE UNDER LOCAL HEATING. Vestnik of Don State Technical University. 2013;13(3-4):5-15. (In Russ.)

Просмотров: 30


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1992-5980 (Print)
ISSN 1992-6006 (Online)