Preview

Вестник Донского государственного технического университета

Расширенный поиск

Распределение контактных напряжений под круговой пластиной, лежащей на мягком слое

Полный текст:

Аннотация

Рассматривается построение эффективного аналитического решения осесимметричной контактной задачи о взаимодействии круглой пластины с двухслойным упругим полупространством. Для этого используется двусторонне асимптотический метод. Под действием нагрузки и реакции со стороны слоя пластина изгибается. Решение задачи получено для различных толщин слоя и значений параметра гибкости пластины. Рассмотрены случаи существенного отличия свойств между слоями полупространства. Для этих случаев построены аппроксимации трансформант ядра интегрального уравнения задачи высокой точности. Проведён контроль точности полученных результатов путём сравнения с известным решением задачи об изгибе круговой плиты на упругом слое, лежащем на недеформируемом основании. Исследовано влияние действия распределённой нагрузки на гибкие и жёсткие пластины, в зависимости от толщины слоя и его жёсткости по отношению к подстилающему полупространству.

Об авторах

Борис Игоревич Митрин
Донской государственный технический университет, Россия.
Россия


Сергей Сергеевич Волков
Донской государственный технический университет, Россия.
Россия


Список литературы

1. Горбунов-Посадов, М. И. Расчёт балок и плит на упругом полупространстве / М. И. Горбунов-Посадов // Прикладная математика и механика. — 1940. — Т. 4, вып. 3. — С. 61–80.

2. Ишкова, А. Г. Об изгибе полосы и круглой пластины, лежащих на упругом полупро-странстве / А. Г. Ишкова // Инженерный сборник. — 1960. — Т. 23. — С. 171–181.

3. Гребенщиков, В. Н. Расчёт круглой пластинки на упругом полупространстве / В. Н. Гребенщиков // Теория расчёта и надёжность приборов : сб. трудов II Саратовской обл. конф. молодых учёных. — Саратов, 1969. — С. 48–51.

4. Александров, В. М. Универсальная программа расчёта изгиба балочных плит на линейно-деформируемом основании / В. М. Александров, Л. С. Шацких // Сб. трудов 7-й Всесоюзной конференции по теории оболочек и пластин. — Москва, 1970. — С. 46–51.

5. Шацких, Л. С. К расчёту изгиба плиты на упругом слое / Л. С. Шацких // Известия Ака-демии наук СССР. Механика твёрдого тела. — 1972. — № 2. — С. 170–176.

6. Александров, В. М. Эффективное решение задачи о цилиндрическом изгибе пластинки конечной ширины на упругом полупространстве / В. М. Александров, И. И. Ворович, М. Д. Солодовник // Известия Академии наук СССР. Механика твёрдого тела. — 1973. — № 4. — С. 129–138.

7. Александров, В. М. Асимптотическое решение задачи о цилиндрическом изгибе плас¬тинки конечной ширины на упругом полупространстве / В. М. Александров, М. Д. Солодовник // Прикладная механика. — 1974. — Т. 10, вып. 7. — С. 77–83.

8. Босаков, С. В. К решению контактной задачи для круглой пластинки / С. В. Босаков // Прикладная математика и механика. — 2008. — Т. 72, № 1. — С. 59–61.

9. Kashtalyan, M., Menshykova, M. Effect of a functionally graded interlayer on three-dimensional elastic deformation of coated plates subjected to transverse loading. Composite Structures, 2009, vol. 89, no. 2, pp. 167–176.

10. Kashtalyan, M. Three-dimensional elasticity solution for bending of functionally graded rectangular plates. European Journal of Mechanics A/Solids. 2004, vol. 23, no. 5, pp. 853–864.

11. Silva, Andrea R. D., Silveira, Ricardo A. M., Goncßalves, Paulo B. Numerical methods for analysis of plates on tensionless elastic foundations. International Journal of Solids and Structures, 2001, vol. 38, nos. 10–13, pp. 2083–2100.

12. Айзикович, С. М. Асимптотическое решение одного класса парных уравнений / С. М. Айзикович // Прикладная математика и механика. — 1990. — Т. 54. — С. 872–877.

13. Айзикович, С. М. Изгиб пластин, лежащих на неоднородном основании / С. М. Айзикович, И. С. Трубчик // Сб. трудов 14-й Всесоюзной конференции по теории пластин и оболочек. — Тбилиси, 1987. — Т. 1. — С. 47–52.

14. Цейтлин, А. И. Об изгибе круглой плиты, лежащей на линейно деформируемом основании / А. И. Цейтлин // Известия АН СССР. Механика твёрдого тела. — 1969. — № 1. — С. 99–112.

15. Аналитические решения смешанных осесимметричных задач для функционально-градиентных сред / С. М. Айзикович [и др.]. — Москва : Физматлит, 2011. — 192 с.

16. Волков, С. С. Аналитическое решение осесимметричной контактной задачи о вдавли-вании штампа в мягкий слой / С. С. Волков, С. М. Айзикович, И. В. Погоцкая // Экологический вестник научных центров Черноморского экономического сотрудничества. — 2012. — № 2. — С. 19–26.

17. Павлик, Г. Н. Взаимодействие фундаментных плит с линейно-упругим основанием / Г. Н. Павлик // Механика контактных взаимодействий : сб. статей / под ред. И. И. Воровича, В. М. Александрова. — Москва, 2001. — С. 254–277.

18. Айзикович, С. М. Асимптотическое решение задачи о взаимодействии пластины с не-однородным по глубине основанием / С. М. Айзикович // Прикладная математика и механика. — 1995. — Т. 59, вып. 4. — С. 688–697.


Для цитирования:


Митрин Б.И., Волков С.С. Распределение контактных напряжений под круговой пластиной, лежащей на мягком слое. Вестник Донского государственного технического университета. 2013;13(5-6):14-24.

For citation:


Mitrin B.I., Volkov S.S. CONTACT STRESS DISTRIBUTION UNDER CIRCULAR PLATE ON A SOFT LAYER. Vestnik of Don State Technical University. 2013;13(5-6):14-24. (In Russ.)

Просмотров: 33


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1992-5980 (Print)
ISSN 1992-6006 (Online)