Preview

Вестник Донского государственного технического университета

Расширенный поиск

О критических нагрузках сжатой упругой прямоугольной пластины с дислокациями и дисклинациями

https://doi.org/10.12737/18157

Полный текст:

Аннотация

Рассматривается задача о критических нагрузках сжатой прямоугольной пластины, содержащей непрерывно распределенные источники собственных напряжений. Анализ задачи проводится на основе модификации системы нелинейных уравнений Кармана для больших прогибов упругих пластин с дислокациями и дисклинациями с различными вариантами краевых условий. Введением замены для функции напряжений задача сводится к исследованию двух задач: линейной краевой задачи относительно функции напряжений, вызванных внутренними источниками и системы нелинейных уравнений относительно прогиба и функции напряжений, вызванных внешними сжимающими нагрузками, которая имеет тривиальное решение. Классическая критическая нагрузка определяется как наименьшее собственное значение линейной краевой задачи, полученной линеаризацией системы нелинейных уравнений относительно тривиального решения. Рассматриваются четыре типа краевых условий: все края подвижно защемлены; все края шарнирно оперты; два противоположных края свободны от напряжений, а два других подвижно защемлены или шарнирно оперты. Равномерно распределенные сжимающие нагрузки одинаковы на противоположных краях. Установлено, что если мера несовместности является нечетной по одной переменной и четной или нечетной по другой переменной, то напряжения, вызванные только внутренними источниками, не приводят к потере устойчивости плоского равновесного состояния и не влияют на критические значения сжимающих нагрузок.

Об авторе

Иса Мусаевич Пешхоев
Донской государственный технический университет
Россия


Список литературы

1. Зубов, Л. М. Уравнения Кармана для упругой пластинки с дислокациями и дисклинациями // Доклады РАН. - 2007. - Т.412, № 3. - С. 343-346.

2. Зубов, Л. М. Сильный изгиб круглой пластинки с непрерывно распределенными дисклинациями / Л. М. Зубов, Т. Х. Фам // Известия вузов. Северо-Кавказский регион. Естественные науки. - 2010. № 4. - С. 28-33.

3. Треногин, В. А. Разветвление решений нелинейных уравнений в банаховом пространстве / В. А. Треногин // Успехи матем. наук. - 1958. - Т. 13. Вып. 4.

4. Срубщик, Л. С. О выпучивании гибких пластин / Л. С. Срубщик, В. А. Треногин // ПММ. - 1968. - Т. 32. Вып.4. - С. 721-727.

5. Reissner E. On Postbuckling Behavior and imperfection sensitivity of Thin Elastic Plates on a Non-linear Elastic Foundation / E. Reissner // Studies in Appl. Math. - 1970. - Vol. XLIX, N. 1. - P. 45-57.

6. Срубщик, Л. С. Краевой эффект и выпучивание тонких пластин на нелинейно-упругом основании / Л. С. Срубщик // Дифференциальные уравнения. - 1985. - Т. XXI, № 10. - С.1790-1794.

7. Пешхоев, И. М. Выпучивание и послекритическое поведение сжатой прямоугольной пластины на нелинейно-упругом основании / И. М. Пешхоев, Л. С. Срубщик. - Ростов-на-Дону, 1983. - 17 с. - Деп. в ВИНИТИ 07.83, № 4037-83.

8. Баул А. В. Влияние начальных несовершенств на выпучивание продольно сжатых прямоугольных цилиндрических панелей и пластин / А. В. Баул, И. М. Пешхоев, Л. С. Срубщик // Известия вузов. Северо-Кавказский регион. Естественные науки. - 1986. - № 1. - С.34-37.

9. Пешхоев, И. М. Ветвление равновесий сжатой упругой прямоугольной пластины с дислокациями и дисклинациями / И. М. Пешхоев // XI всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики, сб. докл., Казань, 20 - 24 августа 2015 г., - С. 2989-2991.

10. Тимошенко, С. П. Пластинки и оболочки / С. П. Тимошенко, С. Войновский-Кригер. - Москва : Физматгиз, - 1966. - 636 с.

11. Ворович, И. И. Математические проблемы нелинейной теории пологих оболочек/ И. И. Ворович. - Москва : Наука, 1989. - 376 с.

12. Морозов, Н. Ф. К нелинейной теории тонких пластин / Н. Ф. Морозов // Доклады АН СССР. - 1957. -Т.114, № 5. - С. 968-671.

13. Вайнберг, М. М. Теория ветвления решений нелинейных уравнений / М. М. Вайнберг, В. А. Треногин. - Москва : Наука, 1969. - 528с.

14. Пешхоев, И. М. Асимптотика и ветвление равновесий сжатых упругих прямоугольных пластин и стержней на нелинейно упругом основании : диссерт. … к-та физ.-мат. наук / И. М. Пешхоев. - Ростов-на-Дону, 1991. - 146с.

15. Михлин, С. Г. Вариационные методы в математической физике / С. Г. Михлин. - Москва : Наука, 1970. - 512с.

16. Bauer, L. Block five diagonal matrices and the fast numerical solution of the biharmonic equation / L. Bauer, E. Reiss // Math. Comput. - 1972. - V.26, 118. - P. 311-326.


Для цитирования:


Пешхоев И.М. О критических нагрузках сжатой упругой прямоугольной пластины с дислокациями и дисклинациями. Вестник Донского государственного технического университета. 2016;16(1):43-51. https://doi.org/10.12737/18157

For citation:


Peshkhoev I.M. On critical loads of compressed elastic rectangular plate with dislocations and disclinations. Vestnik of Don State Technical University. 2016;16(1):43-51. (In Russ.) https://doi.org/10.12737/18157

Просмотров: 46


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1992-5980 (Print)
ISSN 1992-6006 (Online)